Prepare for the Google Professional Machine Learning Engineer exam with our extensive collection of questions and answers. These practice Q&A are updated according to the latest syllabus, providing you with the tools needed to review and test your knowledge.
QA4Exam focus on the latest syllabus and exam objectives, our practice Q&A are designed to help you identify key topics and solidify your understanding. By focusing on the core curriculum, These Questions & Answers helps you cover all the essential topics, ensuring you're well-prepared for every section of the exam. Each question comes with a detailed explanation, offering valuable insights and helping you to learn from your mistakes. Whether you're looking to assess your progress or dive deeper into complex topics, our updated Q&A will provide the support you need to confidently approach the Google Professional-Machine-Learning-Engineer exam and achieve success.
You have deployed a scikit-learn model to a Vertex Al endpoint using a custom model server. You enabled auto scaling; however, the deployed model fails to scale beyond one replica, which led to dropped requests. You notice that CPU utilization remains low even during periods of high load. What should you do?
gunicorn --bind :$PORT --workers 4 --threads 1 --timeout 60 main:app
By increasing the number of workers in your model server, you can increase the CPU utilization of your prediction nodes, and thus enable auto scaling to scale beyond one replica.
Scaling prediction nodes | Vertex AI | Google Cloud
Troubleshooting | Vertex AI | Google Cloud
Using a custom prediction routine with online prediction | Vertex AI | Google Cloud
You have created a Vertex Al pipeline that automates custom model training You want to add a pipeline component that enables your team to most easily collaborate when running different executions and comparing metrics both visually and programmatically. What should you do?
You created an ML pipeline with multiple input parameters. You want to investigate the tradeoffs between different parameter combinations. The parameter options are
* input dataset
* Max tree depth of the boosted tree regressor
* Optimizer learning rate
You need to compare the pipeline performance of the different parameter combinations measured in F1 score, time to train and model complexity. You want your approach to be reproducible and track all pipeline runs on the same platform. What should you do?
The other options are not as good as option D, for the following reasons:
Official Google Cloud Certified Professional Machine Learning Engineer Study Guide, Chapter 3: Data Engineering for ML, Section 3.2: BigQuery for ML
You have developed an AutoML tabular classification model that identifies high-value customers who interact with your organization's website.
You plan to deploy the model to a new Vertex Al endpoint that will integrate with your website application. You expect higher traffic to the website during
nights and weekends. You need to configure the model endpoint's deployment settings to minimize latency and cost. What should you do?
You have a large corpus of written support cases that can be classified into 3 separate categories: Technical Support, Billing Support, or Other Issues. You need to quickly build, test, and deploy a service that will automatically classify future written requests into one of the categories. How should you configure the pipeline?
AutoML Natural Language is a service that allows you to quickly build, test and deploy natural language processing (NLP) models without needing to have expertise in NLP or machine learning. You can use it to train a classifier on your corpus of written support cases, and then use the AutoML API to perform classification on new requests. Once the model is trained, it can be deployed as a REST API. This allows the classifier to be integrated into your pipeline and be easily consumed by other systems.
Full Exam Access, Actual Exam Questions, Validated Answers, Anytime Anywhere, No Download Limits, No Practice Limits
Get All 283 Questions & Answers